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Abstract:

We study a supersymmetric scenario with a quasi exact R-symmetry in light of

the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the

additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute

both to the Higgs mass and to electroweak precision observables. We analyze the

interplay between the two aspects, finding regions in parameter space in which the

contributions to the precision observables are under control and a 125 GeV Higgs

boson can be accommodated. We estimate the fine-tuning of the model finding regions

of the parameter space still unexplored by the LHC with a fine-tuning considerably

improved with respect to the minimal supersymmetric scenario. In particular, sizable

non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.
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1 Introduction

The discovery of a 125 GeV particle closely resembling the Standard Model (SM)

Higgs [1, 2] may represent a challenge for Supersymmetry (SUSY). Indeed, at least in

its minimal version, large loop contributions are needed to raise the mass of the lightest

Higgs boson to the observed value, the most relevant ones coming from the stop system.

This points toward very heavy stops, and/or large left-right stop mixing.

While this is perfectly consistent with the non observation of any superpartner at

the LHC, it is widely believed to be at odds with the concept of naturalness, which

requires light stops with small left-right mixing. Needless to say, after the first LHC

run and the Higgs discovery, understanding whether the concept of naturalness as it

stands is or not a principle followed by nature has become of the utmost importance.

If we insist on naturalness, we need to consider alternatives to the Minimal Su-

persymmetric Standard Model (MSSM). An interesting possibility is given by models

with Dirac gauginos, which have relaxed naturalness bounds on the gluino mass. This

is most welcome, since being the gluino the most constrained particle after the first

LHC run, a relaxed naturalness bound on its mass gives less tension with data. The

mechanism behind the improved naturalness is the generation of Dirac gaugino masses

through supersoft operators, which give only finite contributions to scalar masses [3].

Models with Dirac gauginos are also interesting from a purely phenomenological point
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of view: first of all, squark pair production is suppressed at the LHC due to the absence

of Majorana mass insertions, resulting in less stringent bounds on the gluino mass [4].

Moreover, Dirac gaugino masses are compatible with the presence of a global U(1)R
symmetry, which would be otherwise broken by the Majorana mass. The R-symmetry

can be used as an alternative to R parity to forbid operators leading to proton de-

cay [5, 6], but has far richer consequences. Indeed, the absence of A terms, the µ

term and Majorana gaugino masses has a drastic beneficial effect on the SUSY flavor

problem [7].

A peculiar aspect of R-symmetric models is the Higgs sector particle content. Mod-

els have been proposed in the literature with four Higgs doublets [7], two Higgs doublets

in which the role of the down type Higgs is played by one of the lepton doublets [8],

one up type Higgs doublet [9] or even with no Higgs doublets at all, with the role of

the Higgs being played by one of the slepton doublets [10].

As already pointed out, naturalness is among the reasons motivating the study of

models with Dirac gauginos. However, a solid and complete statement about natural-

ness cannot be done without a full analysis of how a 125 GeV Higgs mass is obtained

within this framework. The situation has been partially studied in [11], where however

the R-symmetric case was not considered. This case is going to be the focus of this

paper. As we will explain, respecting the R-symmetry in the Higgs sector changes

dramatically how the lightest Higgs mass is raised up to 125 GeV. Indeed, while in [11]

this is achieved through an NMSSM-like tree level enhancement of the Higgs mass,

here this possibility is forbidden by the R-symmetry. However, it turns out that the

extra matter necessary to respect the R-symmetry, i.e. the adjoint scalars and the inert

doublets, can provide radiative corrections comparable to the stop one, giving a 125

GeV Higgs with a few percent level fine-tuning.

2 Electroweak symmetry breaking in R-symmetric models

As already explained, preserving the R-symmetry typically requires an enlarged Higgs

sector. For definiteness, we will present the Lagrangian for the four Higgs doublet

model [7], in which the two doublets with R charge 0, Hu and Hd, acquire a vev while

the two with R charge 2, Ru and Rd, are inert doublets. Another, more economical,

possibility is to have the sneutrino as the down type Higgs so that just two doublets, Hu

and Rd are needed.1 For reasons which will become clear later on, we will focus on the

large tan β limit (were tan β & 10) in which most of electroweak symmetry breaking

1It is also possible to have an even more economical Higgs sector [10] where the sneutrino gives

mass to the up type fermions via SUSY breaking Yukawa couplings. However, in this case the Higgs

quartic is generated by SUSY breaking as well.
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is through Hu, and in which the extra Higgs states decouple from the electroweak

symmetry breaking sector. We expect that the various models will give similar results.

The superpotential of the model is given by:

W = WY ukawa +WHiggs

WY ukawa = HuQYuu
c +HdQYdd

c +HdLYee
c, (2.1)

Whiggs =
√

2λuTHuTRd +
√

2λdTRuTHd + λuSHuSRd + λdSRuSHd

+ µuHuRd + µdRuHd .

We write the triplet superfield normalized as

T =
1√
2

(
T 0

√
2T+

√
2T− −T 0

)
, (2.2)

so that the kinetic terms for the (complex) triplet components are automatically canon-

ically normalized; the factor
√

2 in front of λiT is chosen such that W ⊃ λTH
0
uT

0R0
d.

The R-symmetry allows the gaugino fields λi to pair up with the fermionic compo-

nents of the adjoint superfields, ψi, through soft SUSY breaking Dirac masses

LD = MB̃λB̃ψB̃ +MW̃λ
a
W̃
ψa
W̃

+Mg̃λg̃ψg̃ + h.c. (2.3)

Moreover, the soft SUSY breaking scalar terms read

V EW
soft = Q̃†m2

Q̃
Q̃+ ũ†m2

ũũ+ d̃†m2
d̃
d̃+ L̃†m2

L̃
L̃+ ẽ†m2

ẽẽ+BµHuHd

+m2
Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

Ru
|Ru|2 +m2

Rd
|Rd|2 +m2

s|S|2 +m2
TT

a†T a

+ tS S +BSS
2 +

1

3
AS S

3 +BTT
aT a

+ AST ST
2 + ASH SHuHd + ATH HuTHd + h.c. (2.4)

We notice that the R-symmetry forbids all the A-terms except for those written above,

which together with tS we will assume to be negligible for simplicity.2

Let us now comment on the soft breaking terms in the adjoint sector. As already

explained in the introduction, Dirac gaugino masses are generated by supersoft opera-

tors and give finite contributions to the scalar masses. This property has the beneficial

effect of relaxing the gluino naturalness bound, reducing the tension with the direct

searches [4]. However not all possible R-invariant terms that can be constructed out of

2Note that obtaining tS small could require some fine-tuning which we do not quantify here. How-

ever, we have checked that allowing tS to be of order v3 does not qualitatively change our findings.
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the adjoint superfields are supersoft: indeed the non-holomorphic adjoints masses for

the singlet m2
S, the triplet m2

T , and the octect m2
O contribute at the two-loop level to

the β functions for the scalar masses, pushing down their values at low energy. In par-

ticular, a too large octect scalar mass can eventually induce tachyonic squark masses,

causing charge and color breaking at the weak scale [12, 13]. Furthermore, it is also im-

portant for these three terms (Dirac gaugino masses, holomorphic and non-holomorphic

adjoints scalar masses) to be of the same order, to avoid tachyons already at tree level.

It turns out, however, that realizing this spectrum in a UV complete model is quite

challenging. This resembles the µ− Bµ problem in gauge mediation, and it leads to a

source of fine-tuning estimated in [13] to be of order of 0.1%. In what follows we will

discuss a generic case where also non-holomorphic masses are present, assuming that

the mass hierarchy among the adjoint soft terms is such to ensure color and charge

conservation at the weak scale. In fact, as we will discuss in more detail in Sec. 4, the

presence of non-holomorphic masses is instrumental in order to get a 125 GeV Higgs

improving at the same time the fine-tuning with respect to the MSSM.

The total scalar potential is

V EW = V EW
F + V EW

D + V EW
soft ,

V EW
F =

∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 , V EW

D =
1

2

3∑
a=1

(Da
2)2 +

1

2
D2
Y , (2.5)

with W defined in Eq. (2.1) and V EW
soft given in Eq. (2.4). The presence of additional

chiral superfields charged under SU(2)L × U(1)Y modifies the expression for the D-

terms:

Da
2 = g

(
H†uτ

aHu +H†dτ
aHd +R†uτ

aRu +R†dτ
aRd + ~T †λa ~T

)
+
√

2MW̃

(
~T a + ~T †a

)
,

DY =
g′

2

(
H†uHu +R†uRu −H†dHd −R†dRd

)
+
√

2MB̃

(
S + S†

)
, (2.6)

whereMB̃ andMW̃ are the Dirac Bino and Wino masses, τa and λa are the two and three

dimensional SU(2) generators respectively, while ~T a =
√

2 tr(τaT ) =
{
T++T−
√
2

, T
−−T+
√
2i

, T 0
}
.

Writing the neutral fields as

H0
u,d =

hu,d + iau,d√
2

, R0
u,d =

ru,d + iaru,d√
2

, T 0 =
t+ iat√

2
, S =

s+ ias√
2

, (2.7)
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the scalar potential for the CP even components reads:

V =
1

2

[ (
m2
Hu

+ µ2
)
h2u +

(
m2
Ru

+ µ2
)
r2u +

(
m2
Hd

+ µ2
)
h2d +

(
m2
Rd

+ µ2
)
r2d

− 2Bµhuhd +
(
4M2

B̃
+m2

S + 2BS

)
s2 +

(
4M2

W̃
+m2

T + 2BT

)
t2
]

+
1

2

[√
2µ (λSs+ λT t)

(
h2u + h2d + r2u + r2d

)
+ (gMW̃ − g

′MB̃)
(
h2d + r2d − h2u − r2u

)]
+

1

32

(
g2 + g′2

) [(
h2u − h2d

)2
+
(
r2u − r2d

)2]
+
g2 + g′2

16

(
h2ur

2
u + h2dr

2
d

)
+

(
λ2S + λ2T

4
− g2 + g′2

16

)(
h2ur

2
d + h2dr

2
u

)
+
λSλT

2

(
h2u + h2d + r2u + r2d

)
st+

λ2T t
2 + λ2Ss

2

4

(
h2u + h2d + r2u + r2d

)
, (2.8)

where we have assumed for simplicity λuS = λdS = λS, λ
u
T = λdT = λT , and µu = µd = µ

and set AST = ASH = ATH = 0. The minimization conditions for this potential are

written in the appendix. The triplet acquires a vev which is constrained by EWPM to

be |vT | . 3 GeV. We will discuss more precisely the bounds from EWPM in Sec. 3.

Inspecting the various contributions, we notice that the D-terms produce the usual

MSSM quartic. However, the Dirac gaugino masses contribute to reduce the tree level

Higgs mass with respect to the MSSM. Indeed, VD contains trilinear interactions be-

tween the active Higgs fields (those participating in EWSB) and the scalar adjoints,

VD ⊃
1

2
(−gMW̃ t+ g′MB̃s)h

2
u −

1

2
(−gMW̃ t+ g′MB̃s)h

2
d , (2.9)

which after EWSB push down the lightest eigenvalue due to mixing.

In addition, the R-symmetry forces the active Higgs fields to couple only with

the inert doublets (those that do not get vevs) and not among themselves, so that

any NMSSM-like quartic term λ2S,Th
2
uh

2
d is forbidden. As a consequence, the MSSM

tree level upper bound (mh)
2
tree ≤ m2

Z cos2 2β applies, and the lightest scalar mass is

maximized in the large tan β regime. The situation is different when the R-symmetry

is broken in the Higgs sector. In this case W ⊃ λTHuTHd + λSHuSHd and in the low

tan β regime the usual NMSSM-like tree level enhancement is recovered [11].

A more complete discussion of the tree level scalar masses will be presented in

Sec. 2.1, where in order to maximize the lightest eigenvalue we will focus on the large

tan β regime.3 In Sec. 2.2 we will instead study the loop corrections to the Higgs boson

mass.

3However, we have checked that it is easy to deform our benchmark points to obtain examples with

moderate tanβ (∼ 10) without affecting our conclusions.
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Figure 1. Tree level Higgs boson mass in GeV (black lines) and singlet vev vS (red lines)

as a function of BT = BS and λT = −λS . Left: MW̃ = MB̃ = 600 GeV, mT = mS = 1500

GeV and µ = 300 GeV. Right: MW̃ = MB̃ = 900 GeV, mT = mS = 1500 GeV and µ = 300

GeV.

2.1 Tree level Higgs mass

We already pointed out that Dirac gaugino masses constitute an irreducible source of

mixing between active Higgs fields and adjoint scalars. This push-down effect may in

part be kept under control by the supersymmetric couplings λT , λS and by the µ term.

This is evident looking at the off diagonal elements of the mass matrix for CP even

scalars (see Appendix A for the complete expressions):

m2
hu,t = v(−

√
2gMW̃ + 2λT (λSvS + λTvT + µ)) ,

m2
hu,s = v(+

√
2g′MB̃ + 2λS(λSvS + λTvT + µ)) . (2.10)

Anticipating that λ couplings of order one are helpful to increase the Higgs boson mass

at loop level when the stops are not too heavy, and insisting on relatively small µ

values as suggested by naturalness (see Eq. (4.3)), we see that the terms in Eq. (2.10)

can be kept under control for small singlet and triplet vevs. This arises from a partial

cancellation between the first and last terms. Since by field redefinitions we can always

choose g > 0 and MB̃,MW̃ , µ > 0, this then implies that λT > 0 and λS < 0 are

preferred to obtain smaller m2
hu,t

and m2
hu,s

. This is confirmed in Fig. 1, where we

show the tree level Higgs boson mass, together with the singlet vev vS, as a function
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of BT = BS and λT = −λS. In both cases, it is possible to get mh ' mZ for small and

positive vS.

Going back to the mixing between hu, s and t and the related mass reduction,

a simple formula can be obtained in the limit of small vT , vS and large hierarchy

between Dirac gaugino masses and non-holomorphic adjoint masses, MD � madj. For

tan β � 1, the lightest tree level mass is:

(m2
h)tree ' m2

Z − v2
(−
√

2gMW̃ + 2λTµ)2

m2
TR

− v2 (
√

2g′MB̃ + 2λSµ)2

m2
SR

, (2.11)

where m2
TR

= 4MW̃ + m2
T + 2BT and m2

SR
= 4MB̃ + m2

S + 2BS are the masses of the

real adjoint scalars before EWSB. Let us stress that the presence of supersymmetric

couplings, as well as holomorphic and non-holomorphic masses for the adjoint scalars,

improves the situation with respect to [3], where the quartic coupling vanishes for

decoupled adjoint scalars (see also [11]).

2.2 Radiative corrections to the Higgs mass

We compute now the 1-loop corrected Higgs mass using the Coleman-Weinberg poten-

tial:

V CW
Higgs =

1

64π2

[∑
i

(−1)2Ji+1 (2Ji + 1)m4
i

(
log

m2
i

Q2
− 3

2

)]
. (2.12)

The sum is to be taken over all the states coupled to the Higgs, with m2
i ’s the field

dependent masses. To obtain analytic expressions for the loop corrections, we expand

the field dependent masses in powers of hu, setting to zero the singlet and triplet

backgrounds (we know from the previous section that vS must be small in order for

the tree level Higgs mass not to be too different from mZ , while vT must be small to

fulfill the precision measurement constraints). We do not present here the full analytical

expressions, since they are lengthy and not particularly transparent. Simple expressions

can be obtained for MD � madj or madj �MD, where MD and madj are common mass

scales for Dirac gauginos and adjoint scalars, respectively.

Region 1. When the scalar CP even and CP odd masses are significantly larger than

the gaugino masses, µ� MD � madj, we have the following contribution to the
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Higgs quartic coupling:

V CW
Higgs ⊃

1

4

[
5λ4T
32π2

log
m2
T

Q2
+
λ4S + 2λ2Tλ

2
S

32π2
log

m2
S

Q2

+
5λ4T + 2λ2Tλ

2
S + λ4S

32π2
log

m2
Rd

Q2
− λ2Tλ

2
S

16π2

]
h4u

− 1

4

[
5λ4T
16π2

log
M2

W̃

Q2
+

λ4S
16π2

log
M2

B̃

Q2
+
λ2Sλ

2
T

16π2

]
h4u (2.13)

where Q is the renormalization scale and the first two lines show the scalar con-

tribution while the third one shows the fermionic one. We checked that this ex-

pression is still a good approximation in the more interesting limit where milder

hierarchies among the masses hold. However, in what follows we will use the exact

expressions to compute the Higgs boson mass. A particularly simple expression

can be obtained in the limit m2
Rd
' m2

T ' m2
S. The Higgs quartic is then

V CW
Higgs ⊃

1

4

[
5λ4T
32π2

log
m2
T

M2
W̃

+
λ4S

32π2
log

m2
S

M2
B̃

− λ2Tλ
2
S

8π2

]
h4u , (2.14)

so that a relevant positive contribution to the quartic can be obtained for a large

enough ratio madj/MD.

Region 2. In the opposite limit, madj � MD, the one-loop contribution to the Higgs

quartic is :

V CW
Higgs ⊃

1

4

[
5λ4T
32π2

log
M2

W̃

Q2
+
λ4S + 2λ2Tλ

2
S

32π2
log

M2
B̃

Q2

]
h4u

− 1

4

[
5λ4T
16π2

log
M2

W̃

Q2
+

λ4S
16π2

log
M2

B̃

Q2
− λ2Tλ

2
S

8π2

]
h4u (2.15)

where we have also assumed mRd
� MD. The first line shows the scalar contri-

bution, the second line the fermionic one.

Putting all together, we end up with

V CW
Higgs ⊃

1

4

[
− 5λ4T

32π2
log

M2
W̃

Q2
− λ4S − 2λ2Tλ

2
S

32π2
log

M2
B̃

Q2
+
λ2Tλ

2
S

8π2

]
]h4u (2.16)

so that we expect this contribution to be always negative. Let us notice that

this region corresponds to the pure supersoft spectrum, where indeed the non-

holomorphic scalar masses are negligible and M2
D & B in order to avoid problems
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with tachyonic masses. Furthermore, m2
Rd

is given by the gaugino induced one-

loop correction [3]:

m2
Rd

=
α2

π
M2

W̃
log

4M2
W̃
− 2BT

MW̃ 2

, (2.17)

with an inert doublet therefore too light to give any significant boost to the Higgs

mass.

For comparison, the well known stop contribution is given by [14]

V CW
Higgs ⊃

1

4

[
3

16π2
y2t

(
y2t −

m2
Z

2v2

)
log

M2

m2
t

+
3y4t

(16π2)2

(
3

2
y2t − 32πα3(mt)

)
log2 M

2

m2
t

]
h4u , (2.18)

where yt is the top Yukawa coupling, α3 the strong coupling constant and M is a

common soft SUSY breaking stop mass scale. We show also the two-loop contribution,

since the term proportional to the strong gauge coupling may reduce in a significant

way the Higgs quartic.

The simplified expressions, Eqs. (2.13), (2.14), suggest that for λT ' λS ' yt
the new states may give a contribution comparable to the stop one, depending on the

mass hierarchy. In this sense, they can be regarded as “additional stops”, which in

principle can allow for a collective loop enhancement of the Higgs quartic. Moreover,

since both the triplet and the singlet are uncolored, we do not expect the two loop

terms proportional to the gauge couplings to give a reduction analogous to the one

proportional to α3 in the stop sector, making more effective the loop boost achieved

through these states. Whether or not this scenario will allow to obtain a 125 GeV

Higgs with less fine-tuning than in the MSSM will be studied in detail in Sec. 4.

3 Electroweak Precision Measurements

Getting a significant help from the triplet and the singlet to raise the Higgs mass

through radiative corrections requires an appreciable value for the couplings λT and/or

λS. However, the same couplings contribute to the T parameter at loop level. Therefore

there exist a potential tension between generating a large Higgs mass and electroweak

precision data. Besides the loop-level corrections to T there is already at tree level a

dangerous effect due to the vev for the triplet T 0, which can lead to a large contribution

to the T̂ parameter (with the standard T = T̂ /α):

T̂ = 4
v2T
v2
, (3.1)
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Figure 2. Box diagram that contributes to the T parameter.

which constrain the triplet vev to be |vT | . 3 GeV, where

vT =

√
2gMW̃ − 2λSλTvS − 2λTµ

4BT + 8M2
W̃

+ 2m2
T + 2λ2Tv

2
v2 . (3.2)

It can be minimized by taking mT large, or otherwise arranging for the numerator to be

small. Besides the tree level contributions, there are contributions coming from loop of

superpartners. A detailed study of all these contributions will be presented in [15], but

the dominant effect comes from contributions to T̂ from loops involving the fermonic

part of the superfield Hu, T , Rd and S. Integrating them out at loop level, trough the

diagram of Fig. 2 lead to the higher-dimension operator associated with T̂ :∣∣H†uDµHu

∣∣2
Λ2

, (3.3)

with a coefficient proportional to λ4T . Thus the same coupling which can help to make

the Higgs heavier will also lead to too large contributions to T . To estimate the region

of parameter space excluded by electroweak precision data we compute the T̂ parameter

due to vT , and from loops of the scalar and fermonic sector of Hu, T, Rd and S. Imposing

T < 0.2 [16], we find that the fermion loops will force λT . 1, whenever MD . 1 TeV.

4 125 GeV Higgs boson and fine-tuning

We are now in the position to analyze the region in parameter space in which not only

a 125 GeV Higgs boson mass can be obtained, but also the contributions to the T

parameter can be kept under control. Before doing so we turn to the fine-tuning issue.

Taking as measure [17]

∆ = maxai
∂ logm2

h

∂ log ai
, (4.1)
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where ai are the lagrangian parameters of our model. We find that the fine-tuning is

dominated by the mass parameters: m2
T ,m

2
S,m

2
Rd
,m2

stop and µ2. Using for the RGE’s

the results available in the literature [18], we get the following ∆-dependent upper

bounds on the soft SUSY breaking masses:

mQ̃,ũ . 600 GeV
mh

125 GeV

√
3

log Λ/1TeV

√
∆

5
,

mT .
600 GeV

|λT |
mh

125 GeV

√
3

log Λ/1TeV

√
∆

5
, (4.2)

mS .
1000 GeV

|λS|
mh

125 GeV

√
3

log Λ/1TeV

√
∆

5
,

mRd
.

1000 GeV√
6λ2T + 2λ2S

mh

125 GeV

√
3

log Λ/1TeV

√
∆

5
.

In addition, there is also a tree level upper bound on the µ parameter:

µ . 200 GeV

√
∆

5
. (4.3)

In contrast to what happens in models with Majorana gaugino masses, there is no

dependence on the Dirac gaugino masses in the RGE’s for the m2
Hu

parameter.4 We

also see from Eq. (4.2) that for λT ∼ λS ∼ 1, the fine-tuning is driven by mRd
.

Moreover, since for λT ∼ 1 the fine-tuning due to mstop is of the same order than the

one due to madj, there is no worsening of the fine-tuning when mt̃ ∼ madj. Our main

results are shown in Figs. 3 and 4. In Fig. 3 we present the results as a function of

MD = MW̃ = MB̃ and madj = mT = mS = mRd
, fixing also λT = 1 = −λS. The

solid lines corresponds to mh = 125 GeV, the blue region is the one in which there are

unwanted tachyon, while the red region is allowed at 95% C.L. by EWPM. We also show

the fine-tuning parameter ∆ (thin black lines), Eq. (4.1), where we fix Λ, the scale at

which the soft terms are generated, at 20 TeV.5 We use two different values for the stop

mass: mt̃ = 300 GeV (upper curve) and mt̃ = madj (lower curve). The first case refers

4There is nonetheless a dependence through the finite one-loop contribution analogous to Eq. (2.17);

we checked however that the tuning due to this contribution is never the dominant one in the interesting

regions.
5In this work we assume that the required soft parameters can be obtained naturally with the

appropriate values at this scale. However, as mentioned previously, this is a somewhat non-trivial task

and could be the source of additional fine-tuning [12].
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Figure 3. Higgs boson mass mh = 125 GeV (thick lines) and fine-tuning parameter (thin

lines), as a function of MD = MW̃ = MB̃ and madj = mT = mS = mRd
, and BT = BS =

−1
3(m2

Adj + M2
D). We fix λT = 1 = −λS , µ = 300 GeV and the common stop mass to

mstop = 300 GeV for the upper (black) curve and mstop = madj for the lower (green) curve.

Red region: allowed at 95% C.L. by EWPM (T < 0.2.)

to a situation with a very light stop 6 in which the main boost to the Higgs quartic

comes from the adjoint and inert fields. However, since the fine-tuning is dominated

by mRd
, a heavier stop is most welcome, since it gives a larger loop contribution to the

Higgs quartic without worsening the fine-tuning (again, from Eq. 4.2 we see that the

stops give a fine-tuning on the same order as madj). This can be clearly seen from the

green (lower) curve, where we choose mt̃ = madj. We see that for mt̃ ∼ 700 GeV, which

is around the present direct searches exclusion limits [19, 20], there is an acceptable

point with roughly ∆ ∼ 30. For comparison, in the MSSM the minimal tuning needed

to accommodate a 125 GeV Higgs is ∆ & 100 in the case of maximal stop mixing, or

∆ & 300 in the case of vanishing stop mixing [21].

6 A detailed study of the LHC phenomenology of the model is outside the scope of the present

work, therefore we assume mt̃ ∼ 300 GeV to be still allowed by the LHC either because the spectrum

is very compressed, or because there are baryonic R-Parity violating couplings in the superpotential.
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Figure 4. As in Fig. 3, but fixing mRd
= madj/2.

Overall, compatibility between the Higgs boson mass and EWPM is achieved for

MD & 700 GeV, madj & 800 GeV, and for µ > 300 GeV; a lower value for µ requires

heavier gauginos and thus heavier scalars to be safe from the EWPM constraints.

Moreover, the choice |λS/T | ∼ 1 is essential in order to achieve mh = 125 GeV with

states close to the TeV scale. Lower values of the λ couplings would require either very

heavy adjoint scalars or heavier stops.

In Fig. 4 we show the situation in which mRd
is smaller than the adjoint masses,

namely mRd
= madj/2, again for the two cases mt̃ = 300 GeV (upper black curve) and

mt̃ = madj (lower green curve). We notice an overall improvement of the fine-tuning,

up to ∆ . 20. This is due to the fact that the contribution to fine-tuning from mRd
,

which was in the previous situation the dominant one, is now reduced. The loss in

Higgs mass can be compensated by a moderate increase of madj, resulting in a slightly

more advantageous situation.

As a final comment, we consider the case of a pure supersoft spectrum, i.e. the

case in which we set the non-holomorphic adjoint masses mT and mS to zero. With

m2
Rd

given by (2.17), we easily see from Eq. (2.16) that the only relevant radiative

correction comes from the stop sector, with the gaugino contributions decreasing the
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Figure 5. Higgs boson mass mh = 125 GeV (solid line) and fine-tuning parameter (thin

lines), as a function of MD = MW̃ = MB̃ and mt̃ = mRd
, with mT = mS = 0 (supersoft limit),

and BT = BS = −M2
D
3 . We fix λT = 1 = −λS and µ = 300 GeV. Blue region: spontaneous

charge and/or CP breaking. Red region: allowed at 95% C.L. by EWPM (T < 0.2.) . Purple

region: ml̃R
> 100 GeV

Higgs mass. However, it is easy to imagine that the full UV completion of the model

contains a sector which couples the Higgs multiplets to messenger fields. This can

generate the required µ and bµ terms, as well as extra contributions to the Rd mass

which may then push up the Higgs mass even with moderately light stops. In any case,

relying only on the loop corrections from Rd makes the boost to the Higgs quartic less

efficient than in the non-supersoft case, and this makes the model less natural, since

m2
Rd

is associated with a larger fine-tuning. There is also another important constraint

to take into account in a pure supersoft spectrum: all the sfermions acquire mass via

finite gaugino one loop contribution and are therefore predicted (modulo the running

from the adjoint mass scale down to the weak scake) in term of MD. This tends to

make the sleptons, especially the right-handed ones which only have hypercharge gauge

couplings, quite light. This is illustrated in Fig. 5, where we show once again, in the

MD vs Mt̃ plane, the line corresponding to a 125 GeV Higgs together with the region
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allowed by EWPM (in red). We also show the region where the slepton has a mass

greater than 100 GeV (purple region), which correspond to the LEP bound. We see that

the slepton constraint pushes all the masses to be very heavy, into a region with very

large fine-tuning. This leads to the conclusion that sizable non-holomorphic adjoints

masses are required to reduce the fine-tuning.

5 Conclusions

We are finally in an era in which experiments are directly exploring the electroweak

scale, and will (at least in part) shed light on whether or not the electroweak scale is

natural. The first LHC run has already provided us with some indications. The general

message seems to be that our simplest natural models are by now tuned at the percent

level, or worse. While it can turn out that this is the level of tuning of the EW scale,

it may also be taken to motivate the search for more natural (although less minimal)

models. One such possibility is the supersymmetric model with a quasi exact U(1)R
symmetry considered in this work. This kind of models are more natural with respect

to the MSSM, since there is no gluino induced one-loop contribution to the squark

masses. Moreover, the usual supersymmetric flavor problem is greatly ameliorated.

The point on which we focus here is that the adjoint superfields needed to write Dirac

gaugino masses may give relevant loop corrections to the Higgs boson mass: they act

effectively as “additional stops”, at least in part of the parameter space. A possible

drawback is that the very same couplings that help increasing the Higgs boson mass

break custodial symmetry, potentially leading to large contributions to the electroweak

precision measurements. Our main results are summarized in Figs. 3-4, in which we

show the region in parameter space in which a 125 GeV Higgs mass can be obtained

in a way compatible with EWPM. We also presented on the same plot the required

fine-tuning. A first conclusion that can be drawn is that there are regions in which

the fine-tuning is ameliorated with respect to the MSSM, roughly reduced at the same

level as the NMSSM, ∆ ∼ 20 − 30 [22]. Let us stress however that the mechanism

that allows for the increased naturalness is completely different: while in the NMSSM

it is due to the enhanced tree level Higgs boson mass, here it is due to the collective

loop enhancement which reduces the sensitivity to the single mass involved. A second

point which is worth mentioning is that stop masses in the TeV range do not increase

the fine-tuning, which is basically driven by m2
Rd

, Eq. (4.2). Together with the already

mentioned improved naturalness bound on the gluino mass, this makes less worrisome

the non observation so far of any superpartner at the LHC.

What can we expect to observe at LHC-13, given this framework? It is of course

quite difficult to make a complete a solid statement. As we have seen, since the fine-
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tuning is driven by mRd
and madj in the interesting part of the parameter space, natu-

ralness does not require the stop to be as light as possible. On the contrary, a relatively

heavy stop (with a mass around 1 TeV) is preferred since it can give a sizable contri-

bution to the Higgs mass, allowing for the state which are driving the fine-tuning to

be lighter. In any case, we still expect µ to be as low as possible, with the Higgsino

possibly “right around the corner”.
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A Potential minimization and mass matrices

We collect here useful formulas obtained from the minimization of the tree level scalar

potential. For simplicity, we will take from the beginning the limit tan β � 1.

Using for the vacuum expectation values the convention 〈hu〉 = v, 〈t〉 = vT , 〈s〉 =

vS, the minimization of the scalar potential, Eq. (2.8) gives

m2
Hu

=
√

2 (gMW̃vT − g
′MB̃vS)− 2m2

Z − (λSvS + λTvT + µ)2 ,

vT =

√
2gMW̃ − 2λSλTvS − 2λTµ

2
(

2BT + 4M2
W̃

+m2
T + v2λ2T

)v2 , (A.1)

vS = −
√

2g′MB̃ + 2λSλTvT + 2λSµ

2
(

2BS + 4M2
B̃

+m2
S + v2λ2S

)v2 .
The squared mass matrix for the CP-even scalars, in the (hu, t, s, rd) basis, reads

M2
CP−even =


m2
Z · · ·

v
(
λT (λSvS + λTvT + µ)−

√
2gMW̃

)
m2
TR

+ λ2Tv
2 · ·

v
(
λS (λSvS + λTvT + µ) +

√
2g′MB̃+

)
λSλTv

2 m2
SR

+ λ2Sv
2 ·

0 0 0 m2
H

 ,

(A.2)
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where m2
TR

and m2
SR

are defined below Eq. (2.11), while m2
H , the mass of the CP-even

inert doublet, is given by

m2
H = µ2 +m2

Rd
− m2

Z

2
+
√

2 (gMW̃vT − g
′MB̃vS) + 2 (λSvS + λTvT )µ+

+ (λSvS + λTvT )2 +
(
λ2S + λ2T

)
v2 (A.3)

Turning to the CP-odd squared mass matrix, in the (at, as, ard) basis it is

M2
CP−odd =

m2
T − 2BT + λ2Tv

2 · ·
λSλTv

2 m2
S − 2BS + λ2Sv

2 ·
0 0 m2

H

 , (A.4)

with the CP-odd component of the inert doublet degenerate in mass with the CP-even

part.

To conclude, the entries of the charged scalar squared mass matrix in the basis

(H+
u , T

+, (T−)∗, (R−d )∗) are

M2
11 = 2vT

[√
2gMW̃ − 2λT (λSvS + µ)

]
M2

12 = −v
2

[√
2g2vT − 2gMW̃ + 2

√
2λT

(
λSvS − λTvT +

√
2µ
)]

M2
13 =

v

2

[√
2g2vT + 2gMW̃ − 2

√
2λT

(
λSvS + λTvT +

√
2µ
)]

M2
22 = m2

T + 2M2
W̃

+ 2λ2Tv
2 +

g2

2

(
2v2T − v2

)
M2

23 = 2
(
M2

W̃
+BT

)
− g2v2

M2
33 = m2

T + 2M2
W̃

+
g2

2

(
2v2T + v2

)
M2

44 = m2
H +m2

W − 2
√

2gMW̃vT − 4λSλTvSvT − 4
√

2λTµvT +
(
λ2T − λ2S

)
v2 (A.5)

with all the other entries vanishing. The 3 × 3 submatrix obtained by taking out the

R−d entry has vanishing determinant as expected, since one combination of the charged

scalars is the would-be Goldstone boson eaten up by the W±.
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